Простой автоматический телеграфный ключ. Радио для всех - миниатюрный телеграфный ключ mini cw key. Бестрансформаторный преобразователь напряжения

Данный электронный телеграфный ключ изготовлен с использованием всего двух простых микросхем К155ЛА3 и К155ТМ2. Принципиальная схема очень проста.

На элементах DD1.4 и DD1.1 собран тактовый генератор, частоту которого можно регулировать переменным резистором R1. На элементе DD1.3 выполнен узел запуска генератора. Триггер DD2.1 формирует «точки», DD2.2 - «двойные точки».

Когда манипулятор из среднего положения переводят в положение «Точки», на вывод 9 элемента DD1.3 поступает логический «0». При этом на входы элемента DD1.4 приходит логическая «1», и тактовый генератор начинает формировать прямоугольный импульс.

На инверсном выходе триггера DD2.1 сразу появляется низкий логический уровень, который через диод VD1 подается на узел запуска генератора. Это позволяет формировать «точки» одинаковой длительности независимо от того, когда манипулятор был возвращен в исходное состояние. Импульсы с прямого выхода триггера DD2.1 через диод VD5 поступают на работающий в ключевом режиме транзистор VT1. В его коллекторную цепь включено реле К1, которое коммутирует соответствующие цепи передатчика.

При переводе манипулятора в положение «Тире» на вывод 9 элемента DD1.3 и вывод 5 элемента DD1 2 подается низкий логический уровень. При этом начинает работать тактовый генератор. С инверсного выхода триггера DD2.1. а также с DD2.2 через диоды VD1, VD3, VU4 на элементы DD1.3 и DD1.2 поступает логический «0», обеспечивающий работу тактового генератора на время формирования «тире» нормальной длительности. «Тире» получается путем суммирования на резисторе R3 «точек» и «двойных точек», поступающих с прямых выходов триггеров DD2.1 и DD2.2 через диоды VD5 и VD6.

Детали электронного ключа размещают на печатной плате размерами 65х45 мм.

В ключе можно использовать микросхемы серий К133, К158, К130. Диоды VD1-VD6 — любые импульсные, транзистор VT1 - любой маломощный структуры n-p-n. Реле К1 — РЭС-15 (паспорт РС4.591.002). Вместо него можно применить РЭС-43 (паспорт РС4.569.201) или другие, у которых напряжение срабатывания не превышает 5 В.

Другие схемы и решения телеграфных ключей вы можете скачать

Миниатюрный электронный телеграфный ключ MINI CW KEY на микроконтроллере ATtiny13

Этот простой электронный телеграфный ключ разработан Александром Денисовым (RA3RBE) из г. Тамбова. Подробное описание этой конструкции выложено на сайте автора . Кроме того, там Вы сможете ознакомиться с другими не менее интересными его конструкциям, а также задать вопросы.

При разработке этого телеграфного ключа ставилась задача сделать устройство очень простое, доступное для повторения радиолюбителями любого уровня подготовленности, от начинающих до профи.
Кроме этого работа этого устройства должна удовлетворять и малоопытного телеграфиста и радиолюбителя, посвятившего работе на ключе долгие годы.


Принципиальная схема ключа очень проста, ядром этой схемы является микроконтроллер ATTiny13. Он формирует выходной телеграфный сигнал с соотношением 1:3, регулирует скорость передачи в широком диапазоне скоростей, обеспечивает самоконтроль через подключенный миниатюрный капсюль. На выходе ключа стоит MOSFET которым можно управлять непосредственно передатчиком или можно включить в его сток реле, для управления через контакты реле.


Размеры печатной платы ключа: 47х39 мм. Переменный резистор и гнездо для подключения телеграфного ключа установлены таким образом, чтобы плату можно было закрепить к передней панели устройства непосредственно гайками гнезда и переменного резистора "Скорость". На печатной плате имеется джампер для отключения звукосигнализатора, при необходимости. Наборы для самостоятельной сборки укомплектованы уже запрограммированным микроконтролером и панелькой для его установки.

Краткую инструкцию по сборке и состав набора можно увидеть

Стоимость печатной платы (размеры платы 47х39 мм): 50 грн.

Стоимость набора для сборки: 160 грн.

Стоимость собранной и проверенной платы: 190 грн.

Небольшое видео, демонстрирующее работу ключа:

Для покупки наборов обращайтесь (обратите внимание, что в окошке "Код безопасности" необходимо ввести числовой результат указанной арифметической операции) или

Всем удачи, мирного неба, добра, 73!

Телеграфный ключ в эпоху сотовой связи, спутникового телевидения, Интернета и цифровых видов связи?! А почему бы и нет. Давайте не будем думать о чрезвычайных ситуациях, когда все это перестанет функционировать. Очень хочется верить, что человечество сможет избежать глобальных катаклизмов, когда телеграф может оказаться единственным доступным средством дальней связи.

Возьмем другой пример. Что лучше - речной круиз на комфортабельном лайнере или рыбалка с резиновой лодки, уха у костра и ночевка в палатке. Во всем есть свои прелести и одно отнюдь не исключает другого. Также, имея возможность с комфортом передвигаться в автомобиле, мы иногда предпочитаем спокойную прогулку пешком.

Гонки на автомобилях не заменили соревнований по бегу. Человеку важно знать, что его возможности безграничны, что он может очень многое благодаря своему опыту, умению, тренировке. А умение передавать и принимать на слух азбуку Морзе можно, наверное, сравнить с игрой на гитаре или бальными танцами. Не каждый может, но хотелось бы...

Это небольшое вступление, теперь ближе к делу. Решил я вспомнить телеграфную азбуку, которую изучал много лет назад. С тренировкой в приеме сейчас нет вопросов - для этой цели есть компьютерные программы, а вот для передачи нужен реальный телеграфный ключ. Быстрее и проще освоить работу на автоматическом ключе, освоение классического ключа требует длительных тренировок под руководством опытного наставника.

Собственно манипулятор автоматического телеграфного ключа, если позволяют средства и (или) нет навыков точных слесарных работ, лучше приобрести готовый. Можно без проблем заказать прямо из Америки на фирме Виброплекс Даже с учетом стоимости пересылки обойдется дешевле, чем покупать в Москве.

А вот электронику можно сделать своими руками. Есть множество конструкций автоматических телеграфных ключей, начиная от простых на микросхемах 155 серии, популярных в 70-80 годы прошлого века до «супернавороченных» телеграфных процессоров на микроконтроллерах. Изобретать тут уже нечего, вопрос в том, что выбрать. В результате длительных поисков в Интернет и печатных изданиях, я пришел к выводу, что наиболее подходящим, как для обучения, так и для работы в эфире является «Ямбический ключ с памятью», разработанный Александром Клюихиным RU3GA . Адрес странички с авторским описанием ключа http://ra3ggi.qrz.ru/UZLY/key.shtml .

Сразу чувствуется, что программист, схемотехник и пользователь – одно лицо. Только нужные функции, никаких рекламных «наворотов», все удобно и ничего лишнего. Регулировка скорости осуществляется переменным резистором, питание от батареи 3...5 В, причем выключатель не требуется, а работоспособность сохраняется до 1,5...2 В. Это очень удобно, меньше лишних проводов на столе и ключ постоянно готов к работе. В процессе работы он потребляет около 1 МА, а в ждущем режиме потребляемый ток практически равен нулю, так что батареи хватит надолго. Кроме того – отключаемый самоконтроль, память элемента знака, четыре ячейки памяти по 30 букв и некоторые другие, очень полезные функции.

Исходный текст программы автор не выложил в свободном доступе, но он и не нужен. Все равно лучше не сделать! Я только добавил в схему “на всякий случай” несколько блокировочных конденсаторов и разработал свой вариант печатной платы. На плате размером 52x54 мм размещены все элементы, кроме батареи питания. Для питания я использовал два широко распространенных элемента типоразмера AA. Контроллер PIC16F628A в DIP корпусе, все резисторы и конденсаторы в корпусах для поверхностного монтажа 1206 или 0805. Переменный резистор R8 регулятора скорости передачи от аудио плеера, разъемы для кабеля подключения к трансиверу и к манипуляторам 3,5 мм аудио. Громкость сигнала самоконтроля можно регулировать подбором номинала R10.

Переключатель SA1, которым можно изменять соотношение длительности точек, тире и пауз работает в двоичном коде (его марка неизвестна). Вместо него с небольшой коррекцией платы можно использовать DIP переключатели или не ставить его вообще. В этом случае соотношение длительности точка-пауза-тире будет стандартное 1-1-3. При коде «1» (соединен с землей вывод RA2 контроллера) это соотношение будет 1-1-3,5; при «2» – 1-1-4; при «3» (соединены с землей RA2 и RA3) – 1-1-4,5; при «4» – 0,75-1,25-3. Другие кодовые комбинации не используются. Резисторы R2…R4 должны быть установлены даже при отсутствии SA1.

Кнопки SB1…SB4 выведены на лицевую панель, они необходимы для оперативного доступа к ячейкам памяти. SB5 – это кнопка сброса, выводить ее на лицевую панель не нужно, просто в корпусе сверлится отверстие, через которое ее можно нажать, например, спичкой. Автор ввел эту кнопку на случай зависания контроллера для возможности его перезапуска без отключения батареи питания. За несколько месяцев эксплуатации телеграфный ключ у меня ни разу не зависал, но потенциально такую возможность исключить нельзя.

Разъем X1 – выход для подключения к трансиверу, к X2 подключается манипулятор, а к X3, при необходимости, можно подключить классический телеграфный ключ. Разводка платы сделана с учетом того, что манипулятор можно подключить как к этому ключу, так и непосредственно к моему трансиверу FT-817ND.

Прежде, чем изготавливать плату, убедитесь, что разъемы, кнопки, пьезоизлучатель и другие элементы вписываются в нее, ведь гораздо проще скорректировать конфигурацию дорожек, чем «курочить» уже вытравленную плату. Плата и батареи питания помещаются в корпус, спаянный из фольгированного гетинакса. Фольга выполняет роль экрана – надо учитывать, что ключ может эксплуатироваться в условиях сильных электромагнитных полей от передатчика.

Описание работы с ключом я дословно цитирую с сайта RU3GA.

Работа с ключом

Запись в ячейку памяти.
Нажимаем на нужную кнопку памяти и удерживаем её в течение 2 сек. Устройство передаст «WR» и перейдет в режим ожидания ввода буквы. При записи паузы между буквами распознаются автоматически. Для установки паузы между словами нужно сделать паузу в передаче на 2 сек, при этом ключ передаст «R» – это значит, что он понял раздел между словами и переходит в режим ожидания дальнейшего ввода. Он ждет, пока вы не начнете вводить следующее слово. Так что в паузах между словами можно сходить выпить кофе и потом с новыми силами продолжить запись. За три буквы до окончания памяти ячейки тон передачи меняется – это сигнал к тому, что пора заканчивать запись. Окончание записи – нажатие на любую кнопку.

Исправление ошибок при записи.
Если был введен ошибочный символ, даем серию точек больше шести. Ключ передаст «R», это означает, что он перешел в режим коррекции, далее он передает «LAST», затем последнюю правильно введенную букву и переходит в режим ожидания ввода текста. Если ошибка была на первой букве, то ключ передаст «LAST NO».
Пример: надо ввести в память «CQ DE RU3GA». При вводе получилось «CQ DI»… Даем серию точек и ждем, ключ передает «R», затем «LAST D» и переходит в режим ожидания – вводим дальше «E RU3GA» и нажимаем на любую кнопку для выхода из режима записи. Можно править не только последнюю букву, но и все предыдущие.
Пример: надо ввести в память «CQ DE RU3GA». При вводе получилось «CQ NI»… Даем серию точек и ждем, ключ передает «R», затем «LAST N» и переходит в режим ожидания. Даем еще серию точек – ключ передает «R», затем «LAST Q» и переходит в режим ожидания. Вводим «DE RU3GA» и нажимаем на любую кнопку для выхода из режима записи.

Воспроизведение из ячейки памяти – короткое нажатие на соответствующую кнопку ячейки.

Остановка воспроизведения из памяти – нажатие на любой контакт манипулятора или «клоподав».

Отключение/включение самопрослушивания – нажимаем кнопку SB1, затем, не отпуская ее, нажимаем кнопку SB2 и удерживаем их около 4 сек. Ключ передаст «OFF» и отключит самопрослушивание. Для включения повторяем те же действия – ключ передаст «ON» и включит звук. Эта опция «запоминается» – при повторном включении останется нужный режим.

Включение режима «настройки РА» – нажимаем SB1, затем SB3 и удерживаем их в течение 4 сек. Отключение – нажатие на манипулятор, «клоподав» или любую кнопку.

Реверс манипулятора – нажатие SB1, затем SB4 и удержание их в течение 4 сек. Ключ передаст «REV» и сменит раскладку манипулятора на противоположную. Эта опция запоминается и при повторном включении будет нужная вам раскладка точек-тире в манипуляторе.

Е. КРОЧАКЕВИЧ, ( VQ 2 LE )

Одним из примеров применения логических инте­гральных микросхем (ИМС) в радиолюбительской прак­тике является предлагаемый вниманию читателей ав­томатический телеграфный ключ, отличающийся малы­ми габаритами, высокой надежностью и удобством в эксплуатации.

Для его построения могут быть использованы как диодно-транзисторные, так и транзисторно-транзистор­ные логические ИМС двух типов: многовходовые логи­ческие элементы И-НЕ (вентили) и тактируемые фрон­том JK-триггеры.

Рис. 1. Принципиальная схема автоматического телеграфного ключа

Принципиальная схема ключа приведена на рис. 1. Устройство содержит генератор тактовых импульсов (ГТИ), построенный на вентилях D1.1 и D1.2, триггеры D3 и D4, схему управления триггерами на элементах D1. S и D1.4, монитор, собранный на вентилях D2.1, D2.2 и D2.3, и оконечный каскад на базе элемента D2.4 и транзисторов V7 и V8. Эпюры напряжений в схеме, иллюстрирующие ее работу, приведены на рис. 2.

Рис. 2. Эпюры сигналов в схеме

Триггеры D3 и D4 ключа работают в счетном режи­ме и делят частоту тактовых импульсов (рис. 2, а), следующих с периодом Т, на 2. К оконечному каскаду сигналы с выходов D3 и D4 поступают через схему D2.4, осуществляющую операцию И. Таким образом, триг­гер D3 формирует точки и интервалы длительностью Т (рис. 2, б), а добавление с выхода D4 сигнала, показан­ного на рис. 2, в, длительностью обеспечивает форми­рование тире, длительность которых составит, очевид­но, ЗТ. Суммированный сигнал (см. рис. 2, г) с выхода D2.4 поступает на вход оконечного каскада - на базу транзистора V7.

В процессе передачи манипулятором коммутируют входы вентилей D1.3 и D1.4, при этом к триггерам с вы­ходов элементов D1.3 и D1.4 поступают сигналы, раз­решающие их переключения. Связь инверсного выхода триггера D4 с входом вентиля D1.3 необходима для раз­решения работы триггера D3 в режиме счета при фор­мировании сигнала тире независимо от положения ма­нипулятора во время передачи этого знака. В схему предлагаемого ключа введена также дополнительная связь выхода ГТИ с входом J 4 триггера D4, исключаю­щая возможность одновременного формирования сигна­лов С 3 = 0 и J 4 = 1, что привело бы к вероятности лож­ной передачи тире вместо точки (подстрочный индекс названия входа триггера соответствует порядковому но­меру триггера).

Для оценки преимуществ схемы автоматического те­леграфного ключа с применением тактируемых фронтом JК-триггеров существенно то обстоятельство, что для пе­реключения JK-триггера из нуля в единицу не обязатель­но длительное присутствие единицы на входе J. Чтобы изменить его состояние, достаточно хотя бы кратковре­менного совпадения по времени сигнала J = 1 и верши­ны тактового импульса. Таким образом, совпадение сиг­налов J = 1 и С = 1 при последующих J = 0 и С = 1 обеспечивает запоминание поступившего управляющего сигнала и, следовательно, память положения манипуля­тора. В данном случае тактовые импульсы поступают со скважностью, равной 2 (длительность паузы равна длительности импульса), и положение манипулятора за­поминается здесь в течение той половины интервала между двумя знаками сообщения, которая непосред­ственно примыкает к началу очередного знака. Замыка­ние манипулятора в интервале времени, когда С 3 = О, не будет иметь отклика. Отметим, что при передаче со­общения с малой скоростью, когда реальная длитель­ность прижатия манипулятора может быть много короче точки (или интервала) между знаками сообщения, обе­спечение памяти положения манипулятора требуется во всем интервале, чтобы гарантировать надежный отклик на каждое замыкание манипулятора. Наоборот, при вы­соких скоростях передачи сообщений реальная длитель­ность прижатия манипулятора может быть несколько длиннее точки. В этом случае память положения мани­пулятора вообще не нужна (по крайней мере, во всем интервале), так как при ее наличии даже самая малая передержка манипулятора приведет к отработке лиш­него знака. Таким образом, построение предлагаемого ключа с памятью положения манипулятора именно в по­ловине интервала между знаками сообщения является решением, в известной мере удовлетворяющим одновре­менно обоим этим противоречивым требованиям.

ГТИ предлагаемого ключа построен по простой схе­ме симметричного мультивибратора на вентилях D1.1 и D1.2 с хронирующими конденсаторами С1 и С2. Час­тоту следования тактовых импульсов и, следовательно, скорость передачи сообщений устанавливают регулиров­кой R3 в зависимости от желания или квалификации оператора. При конструировании ключа следует иметь в виду довольно острую зависимость в такой схеме ГТИ частоты генерации от величины питающего напряже­ния. Так, например, когда положение регулировки R3 соответствует максимальной скорости передачи сообще­ния (движок R3 на корпусе), изменение напряжения питания на 1 % вызывает изменение частоты следования тактовых импульсов на 3 - 5%. Это обстоятельство предъявляет определенные требования к стабильности источника питания. В процессе наладки ГТИ иногда наблюдается срыв или неустойчивость генерации. Суть этого явления состоит в том, что при одновременном заряде конденсаторов С1 и С2 до одинакового напряже­ния, на входы обоих вентилей мультивибратора посту­пают уровни логического нуля, а на выходах оказыва­ются уровни логической единицы, и генерация, следова­тельно, отсутствует. Если в процессе настройки в ГТИ произошел такой срыв генерации, следует отключить питание и разрядить оба конденсатора. С точки зрения устойчивой генерации ГТИ напряжение питания в схему ключа следует подавать резким фронтом, например с помощью тумблера. Диоды VI и V2 предназначены для защиты входов вентилей D1.1 и D1.2 от отрицательных полуволн напряжения, образующихся при перезаряде конденсаторов С1 и G2. Отсутствие этих диодов может привести к сбоям в работе ключа.

Как уже говорилось, в устройстве, изображенном на рис. 1, на выходе ГТИ формируются импульсы со скваж­ностью, равной 2 (меандр), что обеспечивает память по­ложения манипулятора в половине интервала между знаками сообщения. В пределах этого интервала память может быть увеличена или сокращена по желанию кон­структора. Для этого достаточно нарушить симметрию плеч мультивибратора путем изменения емкостей кон­денсаторов С1 и С2.

Наличие в схеме ключа монитора, хотя бы в виде макета, существенно упрощает процесс наладки устрой­ства, а использование монитора в окончательной кон­струкции не ухудшает общей надежности и помехо­устойчивости ключа, но зато облегчает работу опера­тора.

В данном случае монитор - низкочастотный генера­тор сигналов прямоугольной формы, собран по схеме мультивибратора на логических элементах D2.1 и D2.2. В состав монитора входит также ключевой буферный каскад на вентиле D2.3. К входу монитора могут быть подключены один высокоомный или ряд низкоомных наушников. Наиболее эффективно применение микроте­лефона ТМ-2М.

Выходной каскад телеграфного ключа можно строить по различный принципиальным схемам, как с исполь­зованием транзисторов, так и микросхем. На рис. 3 при­веден вариант построения выходного каскада ключа с применением микросхем серии К155, а на рис. 4 и 5 - с применением транзисторов, например КТ315. Каждый из этих вариантов обладает своими достоинствами и недостатками, которые следует учитывать при конструи­ровании. В частности, при построении транзисторного варианта выходного каскада для его питания можно использовать относительно высокие напряжения, огра­ничиваемые лишь величиной предельно допустимого на­пряжения «коллектор - эмиттер» применяемого транзистора, - отсюда широкий выбор типов реле Р1, номи­нальные токи срабатывания которых не должны превы­шать 100 мА (применительно к транзисторам КТ315). К тому же площадь монтажа, занимаемая двумя транзи­сторами КТ315, меньше площади, занимаемой микросхемой. При построении же интегрального варианта выход­ного каскада питание реле и логических микросхем должно осуществляться одним и тем же напряжением, а ограничение максимального выходного тока каждого вентиля (15 - 30 мА) затрудняет выбор реле с надлежа­щими уровнями напряжения и мощности срабатывания. Кроме того, конструкция в этом варианте загружается достаточно большим количеством навесных элементов (R10 - R13 на рис. 3) для равномерного распределения нагрузки на каждый вентиль.

Рис. 3. Вариант построения вы­ходного каскада ключа на ло­гических микросхемах

Рис. 4. Вариант построения вы­ходного каскада ключа на тран­зисторах (срабатывание на за­мыкание реле Р1)

Рис. 5. Вариант построения выходного каскада ключа на транзисторе (срабатыва­ние на размыкание реле P 1)

Применять микросхемы в выходном каскаде ключа целесообразно лишь в тех случаях, когда вся оперативная автоматика радиостанции выполнена на логических элементах с тем же напряжением питания (+ 5 В), при­чем источник питания обладает достаточной выходной мощностью. Применение транзисторных каскадов, изо­браженных на схемах рис. 4 и 5, обосновано в случаях, когда с целью сокращения количества микросхем из кон­струкции исключены монитор и вентиль D2.4. В осталь­ных случаях целесообразно построение оконечного кас­када по схеме рис. 1.

Рис. 6. Принципиальная схема ГТИ

Особый интерес представляет использование в со­ставе телеграфного ключа ГТИ, принципиальная схема которого изображена на рис. 6. Здесь с помощью рези­стора R3 одновременно регулируется частота и скваж­ность тактовых импульсов. Это позволяет при малых скоростях передачи работать с памятью положения ма­нипулятора практически во всем интервале между зна­ками сообщения, обеспечивая тем самым однозначный отклик ключа на любое кратковременное замыкание ма­нипулятора. При максимальной же скорости работы ключа память положения манипулятора в интервале между смежными знаками сообщения практически от­сутствует, что исключает отработку лишних знаков со­общения при возможных передержках манипулятора. Отметим, что в середине диапазона регулирования ско­рости память положения манипулятора, как и в схеме ключа рис. 1, охватывает половину интервала между смежными знаками сообщения.

Параметры навесных элементов и номера выводов микросхем указаны на рисунках для случая применения ИМС серий К155 или К136. В качестве вентилей D1.1 - D1.4 и D2.1 - D2.4 можно использовать К155ЛАЗ или К136ЛАЗ, а в качестве триггеров D3 и D4 - ИМС К155ТВ1 или К136ТВ1. Таким образом, схема построена на четырех интегральных микросхемах. Однако, исклю­чив из схемы монитор и изменив построение выходного каскада, можно обойтись тремя микросхемами, а при­менение ИМС, содержащих два JK-триггера в одном корпусе, например К134ТВ14, сокращает количество микросхем до двух.

Можно применять любые кремниевые или германие­вые малогабаритные диоды с малыми токами утечки, но удачнее всего с микросхемами сочетаются микроми­ниатюрные диоды КД102 или КД104 с любыми буквен­ными индексами.

Некоторые входы микросхем при построении схемы ключа остаются незадействованными. В общем случае для повышения помехоустойчивости ключа на незадей-ствованные входы следует подавать напряжение логиче­ской единицы (+ 2,5 - Ь4 В), а также шунтировать выводы питания каждой микросхемы в месте ее установ­ки конденсатором емкостью 0,1 мкФ. Однако, учитывая отсутствие в схеме рис. 1 длинных линий, разводящих мощные импульсы с крутыми фронтами, и достаточ­но большие мощности срабатывания элементов серий К155 и К136, вполне допустимо незадействованные вхо­ды оставлять неподключенными (как, например, уста­новочные входы R и 5 триггеров D3 и D4). Незадейство­ванные входы J и К триггеров можно также оставлять неподключенными, либо объединять между собой неза­действованные входы J с одним из задействованных вхо­дов J или же с выходом Q; а входы К - с выходом каж­дого триггера, тем более что конструктивно входы J большинства интегральных JK-триггеров расположены рядом с выходом Q, а входы К - с выходом Q. Это ре­шается в каждом конкретном случае в процессе состав­ления монтажной схемы. Незадействованные входы вен­тилей 2И-НЕ объединяются с рабочими. В стадии маке­тирования и наладки, однако, незадействованные выводы подключать не рекомендуется; тогда в случае выхода из строя одного из рабочих входов можно будет исполь­зовать ранее незадействованный.

Для повышения общей помехоустойчивости ключа в случаях недостаточно эффективно экранированного вы­ходного каскада передатчика или при наличии других помех в местах подключения к устройству проводников от движка потенциометра R3 и электродов манипулято­ра при необходимости следует установить развязываю­щие конденсаторы С р емкостью 0,022 - 0,068 мкФ. Диод V4 установлен для защиты входа вентиля D1.3 от наво­док положительной полярности, что повышает помехо­устойчивость по цепям манипуляции. Конденсатор С5 не­обходим для исключения воздействия на схему ключа коммутационных помех, возникающих при работе реле PL Контакты реле Р1 в цепи манипуляции передатчика шунтированы RС-цепью для исключения их искрения, а также для электрической нейтрализации вибрации кон­тактов в момент коммутации. Это требование не являет­ся специфическим в связи с применением микросхем в конструкции ключа; его, однако, важно иметь в виду, особенно при попытках имитировать кнопкой действие ГТИ, для проверки действия логической части схемы ключа. Конденсатор С п емкостью 0,047 - 0,068 мкФ включен на шины питания для предотвращения импульс­ных всплесков напряжения в моменты переключения элементов схемы в процессе работы ключа.

Большое число схем телеграфных ключей опубликовано в средствах периодической печати и в Интернете, но не все способны удовлетворить привередливого телеграфиста. То ключ собран на большом числе комплектующих элементов, то эти элементы слишком "серьёзны" для такой несложной конструкции.

Например, если ключ выполнен на микроконтроллере, потребуются его приобретение и программирование, что не всегда доступно. А то схема слишком простая, и устройство, собранное по ней, обладает не всеми требуемыми возможностями.

Принципиальная схема

Поискав уже "готовую простенькую" схему ключа для своего нового будущего трансивера, я так и не смог найти желаемую (ни в периодической печати, ни в Интернете). Мало того, в Интернете встретил немало постов с вопросами, именно по этой теме. Однако моё внимание всё же привлекла схема одного телеграфного ключа, уже давно ставшая почти классической .

Собран он на трёх микросхемах К176ЛЕ5, К176ЛА7 и К176ТМ1. И минимальный сервис у ключа в наличии, и схема не очень сложная, и питание - 9 В, поэтому не нужно отдельного источника питания в трансивере для телеграфного ключа. А если применить микросхемы серии К561, то подойдёт и 12 В, что ещё удобнее.

Хотя мне и встретилась схема ключа, выполненного всего на двух микросхемах К561ИЕ11 и К561ЛЕ5 , но вот отзывы пользователей о его работе были не очень лестные, к тому же микросхема К561ИЕ11 не столь распространена, как хотелось бы. Поэтому я предпринял попытку упростить схему ключа , выполненную на трёх микросхемах, которая взята в качестве прототипа.

Рис. 1. Электронный телеграфный ключ, схема.

В результате этой модернизации был разработан телеграфный ключ, схема которого показана на рис. 1 и основные параметры которого практически совпадают с параметрами прототипа.

Использовано то же самое напряжение питания, скорость передачи - 30...270 знаков в минуту, её интервал немного расширен вниз с целью получения минимальной скорости, принятой в качестве начальной при профессиональном обучении телеграфной азбуке.

Применены широко доступные микросхемы малой степени интеграции и, кроме всего прочего, их число, как и транзисторов и диодов, меньше.

При этом устройство снабжено как звуковой, так и световой сигнализацией допускает подключение внешнего реле для управления различными узлами с гальванической развязкой и позволяет управлять работой телеграфных гетеродинов.

Имеется выход на УЗЧ приёмника для организации самопрослу-шивания во время передачи телеграфных сигналов, возможно и управление другими устройствами с помощью логических уровней.

Звуковой контроль формируемых сигналов осуществляется с помощью телефонного капсюля BF1, визуальный - с помощью светодиода HL1.

На элементах DD1.1, DD1.2 собран импульсный RC-генератор с регулируемой частотой. Резистором R2 можно регулировать скорость передачи в указанном выше интервале. На триггере DD2.1 собран формирователь точек, на триггере DD2.2 совместно с триггером DD2.1 - формирователь тире.

На диодах VD3, VD4 собран элемент ИЛИ, на логических элементах DD1.3, DD1.4 - генератор звуковой частоты, на транзисторе VТ1 - ключ.

Работает ключ следующим образом. В нейтральном положении манипулятора SA1 на один из входов (вывод 2) элемента DD1.1 и на один из входов (вывод 6) элемента DD1.2 через резистор R3 поступает напряжение, соответствующее уровню лог. 1, поэтому импульсный генератор заторможен и на входе С (вывод 3) триггера DD2.1 - лог.

0. Одновременно лог. 1 на входе R триггера DD2.2 устанавливает такой же уровень и на его инверсном выходе (вывод 12). При переводе манипулятора SA1 в положение "Точки" (влево по схеме) на выводы 2 и 6 микросхемы DD1 поступает лог.

0, и импульсный генератор начинает работать. Его выходные импульсы поступают на вход С (вывод 3) триггера DD2.1, который формирует сигнал точки, поступающий через диод VD3 на базу транзистора VТ1, последний периодически открывается, и светодиод HL1 начинает светиться в такт этим сигналам.

Инвертированные импульсы с коллектора транзистора VТ 1 через резистор R7 поступают на вход (вывод 9) элемента DD1.3. В результате звуковой генератор начинает формировать телеграфные посылки 34 сигнала с частотой около 1 кГц. Частота звукового генератора определяется номиналами элементов R8 и С7. Состояние триггера DD2.2 при этом не изменяется, поскольку на его вход R (вывод 10) через резистор R4 поступает уровень лог. 1. Ключ обеспечивает формирование сигнала точки нормальной длительности даже при кратковременном замыкании манипулятора SA1.

При переводе манипулятора SA1 в положение "Тире" (вправо по схеме) генератор импульсов и триггер DD2.1 работают, как и в положении "Точки", однако на входе R триггера DD2.2 присутствует лог. 0, поэтому он изменяет своё состояние под действием импульсов с выхода триггера DD2.1.

Импульсы с выходов триггеров DD2.1 и DD2.2 через диоды VD3, VD4 поступают на резистор R5, где суммируются, формируя сигнал тире. Ключ обеспечивает передачу тире нормальной длительности даже при кратковременном замыкании манипулятора. Длительность точки равна длительности паузы, длительность тире - длительности трёх точек.

Конденсатор С4 блокирует цепи управления по ВЧ, он подавляет наводки, что позволяет вынести светодиод на некоторое удаление от каскада, например, на переднюю панель, конденсатор С5 обеспечивает мягкость передачи телеграфной посылки (в случае электронного управления телеграфным гетеродином), от его ёмкости зависят фронт и спад телеграфной посылки. Устройство собрано на макетной печатной плате с применением проводного монтажа. Микросхемы серии К176 можно заменить аналогичными серии К561 (К564), при этом напряжение питания можно увеличить до 15 В. Резисторы - МЛТ, С2-23, оксидные конденсаторы - К50-35 или импортные, остальные - керамические К10-17 или плёночные серии К73.

Транзистор - любой серий КТ315, КТ3102. Реле можно применить любое малогабаритное с номинальным напряжением, соответствующим напряжению питания ключа, и током срабатывания не более 100 мА. Подойдут, например, отечественные РЭС10 (паспорт РС4.524.303 или РС4.524.312), РЭС15 (исполнение РС4.591.002 или ХП4.591.009), РЭС49 (исполнение РС4.569.421 -02 или РС4.569.421-08).

Светодиод можно применить маломощный любого свечения, его желательно разместить на передней панели трансивера. Телефонный капсуль BF1 - ТА56М с сопротивлением катушки 1,6 кОм, можно применить аналогичный высокоомный капсуль ТОН-2.

Потребляемый устройством ток в режиме молчания - 0,3 мА, в режиме "Точка" - 10 мА, в режиме "Тире" - 15 мА, что несколько больше, чем у прототипа, но того "требуют" световая и звуковая сигнализации.

Телеграфные гетеродины

Ключ может управлять кварцевыми телеграфными гетеродинами по цепи коллектора (рис. 2), истока (рис. 3) и эмиттера (рис. 4). Все три генератора выполнены по схеме ёмкостной трёхточки.

Рис. 2. Схема кварцеванного телеграфного гетеродина.

Рис. 3. Схема кварцеванного телеграфного гетеродина (вариант 2).

Рис. 4. Схема кварцеванного телеграфного гетеродина (вариант 3).

Подстроечные конденсаторы, включённые в цепь кварцевого резонатора, обеспечивают подстройку частоты генерации, а такие же конденсаторы, установленные на выходе, обеспечивают регулировку уровня сигнала, поступающего на последующие каскады.

Владимир РУБЦОВ (UN7BV), г. Астана, Казахстан. Радио-12-17.

Литература:

  1. Раудсепп X. Экономичный телеграфный ключ. - Радио, 1986, № 4, с. 17.
  2. Васильев В. Ключ на двух микросхемах. - Радио, 1987, № 9, с. 22, 23.